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Abstract

We investigate the information processing of a linear mixture of independent sources of different magnitudes. In particular we consider the
case where a numberm of the sources can be considered as “strong” as compared to the other ones, the “weak” sources. We find that it is
preferable to perform blind source separation in the space spanned by the strong sources, and that this can be easily done by first projecting
the signal onto them largest principal components. We illustrate the analytical results with numerical simulations.q 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

During the recent years many studies have been devoted
to the study of Blind Source Separation (BSS) and more
generally to that of Independent Component Analysis
(ICA) (see, e.g. Amari & Cardoso, 1997; Cardoso, 1989;
Comon, 1994; Herault, Jutten & Ans, 1985). Within the
standard framework one assumes a multidimensional
measured signal to result from a linear mixture of statisti-
cally independent components, or “sources”. In most cases
one makes the optimistic hypotheses that the number of
sources is equal to the dimension of the signal (the number
of captors), and that the unknown mixture matrix is inver-
tible. The goal of BSS is then to compute an estimate of the
inverse of the mixture matrix in order to extract from the
signal the independent components.

In the present paper we study the effect of having sources
with different “strengths” when performing BSS. After
giving a proper definition of the strength of a source, the
main purpose of our study is to relate the strength of a source
to its contribution to the information conveyed by the

processing system about the signal, and to consider in
more detail the case where some of the sources are very
weak compared to the others. We will show that in that
case it is worthwhile to project the data onto the space
generated by the strong sources in order to extract mean-
ingful information and to avoid numerical problems. The
contributions to the (projected) signal from the weak
sources can then be considered as noise terms added to
the linear mixture of strong sources. Since the sources are
independent, this “noise” is thus independent of the “pure”
signal (the part due to the strong sources).

The paper is organized as follows. In Section 2 we intro-
duce the model and give a precise definition to the strength
of a source. In Section 3 we compute Shannon information
quantities from which we characterize how each source
contributes to the information conveyed by the data and
by the output of the processing network. We then discuss
the case of a linear mixture ofN independent sources with
N 2 m “weak” sources andm “strong” sources. The results
of Section 3 show that in such a case it would be preferable
to be able to work in them-dimensional space spanned by
the strong sources. We show in Section 4 that, with a good
approximation, this is simply done by projecting the data
onto them largest principal components. As a result one can
perform BSS in them-dimensional space where one is deal-
ing with an m-dimensional linear mixture corrupted by a
weak input noise. In Section 5 we study, at first nontrivial
order in the noise strength, the expected performance in the
estimation of them strong sources. Eventually in Section 6
we present numerical simulations.
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2. The model

We consider the information processing of a signal which
is an N-dimensional linear mixture ofN independent
sources. At each timet one observesS�t� � { Sj�t�; j �
1;…;N} ; which can be written in term of the unknown
sourcess�t� � { sa�t�; a � 1;…;N} as:

Sj �
XN
a�1

Mjasa; j � 1;…;N; �1�

whereM � { Mja; j � 1;…;N; a � 1;…;N} is the mixture
matrix assumed to be invertible. As it is well known, and
easily seen from the above equation, it is not possible to
distinguish between the mixture ofswith the matrixM from
the mixture ofs0 ; PDs with the matrixM 0 ; MD21P21

whereD is an arbitrary diagonal matrix with non-zero diag-
onal elements, andP an arbitrary permutation ofN indices.
If we decide to consider both normalized sources and
normalized mixture matrices, we are left with a diagonal
matrix D, which defines the “strengths” of the sources.
More precisely we write

Sj �
XN
a�1

�Mjahasa; j � 1;…;N �2�

assuming zero mean and unit variance for every source:

ksal � 0; ks2
al � 1; a � 1;…;N; �3�

wherek l denotes the average with respect to the (unknown)
sources probability distributions,

r�s� �
Y
a

ra�sa�; �4�

with M̄ the normalized mixture matrix. The normalization
can be chosen in different ways, and the two of them are of
particular interest for what follows. The simplest one is, for
eacha

� �MT �M �aa �
XN
j�1

� �Mja�2 � 1: �5�

The second one is a normalization on the inverse of the
mixture matrix:

� �M 21 �MT21�aa �
XN
j�1

�� �M21�aj�2 � 1: �6�

Once a particular normalization, such as Eqs. (5) or (6), is
chosen, the parametersha in Eq. (2) are well defined and
can be understood as the relative strengths of the sources.

3. Information processing in the presence of
inhomogeneous sources

Since the mixture matrix is assumed to be invertible, it is
in principle possible to compute an estimate of it. This can

be done with any one of the known BSS algorithms (see, e.g.
Bell & Sejnowki, 1995; Cardoso, 1989; Comon, 1994;
Nadal & Parga, 1997). As a result one obtains an estimate
of the inverse of the mixture matrix, which in our notations
can be written as

1
ha
� �M21�a;j : �7�

This shows that it will be dominated by the smallesths, and
numerical instabilities or overflows may occur if some of
them are very small. In many approaches to BSS whitening
of the data is first performed. The whitened data are then an
orthogonal mixture of sources, so that after this preproces-
sing one has sources of equal strengths. But this preproces-
sing requires a multiplication by the inverse of the
eigenvalues, and this is subject to the same numerical
problems as with the computation of the inverse of the
mixture matrix: as we will see in Section 4, small values
of h lead to the existence of small eigenvalues.

3.1. Information content of the data

Let us now compute the amount of information conveyed
by the data,S, about the sources, that is the mutual infor-
mation (Blahut, 1988)I(S,s). To do so we consider

Sj �
XN
a�1

�Mjahasa 1 nj ; j � 1;…;N: �8�

wheren � {nj ; j � 1;…;N} is a vanishing additive noise,
knjl � 0; knjnkl � bdj;k with b! 0: ThenI(S,s) is a constant
(that is a quantity that depends onb alone) plus the data
entropy. Since the mixture matrix is invertible, we have

I �S; s� � Const: 1 lnudet �M u 1
X
a

ln ha

2
X
a

Z
dhara�ha�ln ra�ha�: �9�

The last term in the above expression is the sum of the
source entropies. One should remember that thes‘s are the
normalized sources,ks2

al � 1: This shows that each source
contributes to the information by a combination of its
strength and its entropy: the strength term favors strong
sources, whereas the entropy term favors the sources with
a probability distribution function (p.d.f.) close to Gaussian.
The entropy terms, however, are bounded: the entropy of a
source cannot exceeds the one of a Gaussian with same
variance, that is

2
Z

dhara�ha�ln ra�ha� #
1
2

ln 2pe: �10�

Hence the information can be easily dominated by the
strength terms, which can be arbitrarily large.

It is known that for performing BSS perfect knowledge of
the sources distribution is not necessary and that working on
the cumulants of order 2 and 3 or 4 is sufficient (see, e.g.
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Comon, 1994; Nadal & Parga, 1997). We can thus analyze
the result, Eq. (9), by making a close-to-Gaussian approx-
imation (Comon, 1994; Nadal & Parga, 1997). If we assume
the sources to have non-zero third-order cumulants,

l�3�a ; ks3
alc; �11�

we replace the source distributionra by

r̂a�sa� � e2s2
a=2����

2p
p 1 1 l�3�a

sa�s2
a 2 3�
6

 !
: �12�

The distributionr̂a has the same three first moments as the
true distributionra (Abramowitz & Stegun, 1972).

In the case of a symmetric non-Gaussian distribution, the
third-order cumulants are zero and one has then to take into
account non-zero fourth-order cumulants. It is a straightfor-
ward exercise to perform the same analysis as below in that
case. For simplicity in this paper we will consider only the
case of non-symmetric distributions.

Within this approximation, Eq. (12), the mutual infor-
mation (9) reads:

I �S; s� � Const: 1 lnudet �M u 1
X
a

ln ha 1
N
2

ln 2pe

2
1
12

X
a

ks3
al2

c: �13�

From the above expression, the most important sources are
those for which the quantity

ks3
al2

c 2 ln ha �14�
is the smallest.

We consider now the information that will be conveyed
by a network processing the data, and ask for the contribu-
tion to this information by each source when the network
performs BSS.

3.2. Characterization from infomax

The infomax criterion (Linsker, 1988; Nadal & Parga,
1994) will allow us to get some more insight into the link
between the sources strengths and the amount of infor-
mation that can be extracted from the data.

We consider the information processing of the signal by a
non-linear network, and we are interested in computing the
mutual informationI(V,S) between the inputS and the
output V � { Vi ; i � 1;…;N} of the network. Since the
signal is a linear mixture, the relevant architecture is a linear
processing followed by a (possibly) nonlinear transfer func-
tion that may differ from neuron to neuron:

Vi � fi�hi�1 ni �15�

hi �
X

j

Jij �Sj 1 n0
j �; �16�

where n0 � {n0
j ; j � 1;…;N} and n � {ni ; i � 1;…;N}

are additive input and output noises, respectively, with

kn0l � 0; knl � 0; kn0
j n

0
j 0l � b0dj;j 0 ; knini 0 l � bdi;i 0 :The Jij

can be viewed as synaptic efficacies and thehis as post-
synaptic potentials (PSP). As explained in the previous
section, the noise has to be introduced in order to have a
non-trivial mutual information, and we take the limit 0#
b0

p b p 1: For strictly zero input noise,b0 � 0; in the
limit b! 0 the mutual information is up to a constant
equal to the output entropy. As shown in Nadal and Parga,
(1994) its maximization over the choice of bothJ and the
transfer functionsfi’s leads to BSS. One can then derive
practical algorithms for performing BSS (Bell & Sejnowski,
1995). In this limit ofb0 � 0 all the sources play the same
role, that is the maximum of the mutual information is inde-
pendent of the individual sources properties as well as of the
mixture matrix. When one takes into account a non-zero
input noise, then at first non-trivial order inb0/b one sees
that the input noise introduces a scale that breaks this invar-
iance. More precisely, at first-order inb0/b the mutual infor-
mation I(V,S) can be written (see Nadal and Parga (1994)
for details):

I �V;S� � I0�V;S�2
b0

2b

XN
i�1

G ii

Z
dhic i�hi�f 0i2; �17�

whereI0(V,S) is the value atb0 � 0;

I0�V;S� � Const: 2
Z

dhc�h�ln c�h�YN
i�1

f 0i�hi�
�18�

and�b0
=b�G ii is the variance of the noise on the PSPhi:

G ii ; �JJT�ii : �19�
Finally, c�h� is the probability distribution ofh induced

by the sources input distribution, andc i�hi� the marginal
distribution of the PSPhi. At a given J, optimizing with
respect to the choice of transfer functions gives

f 0i�hi� � c i�hi� 1 1
b0

b
G ii �kc 2

i l 2 c 2
i �hi��

( )
�20�

with kc 2
i l � R

dhic i�hi�c 2
i �hi� �

R
dhic i�hi�3: We now

optimize overJ. At zeroth-order the optimum is reached
for J � M 21 (up to an arbitrary permutation), so that we
write

W ; JM � 1N 1
b0

b
W1

; �21�

where1N is theN × N identity matrix. Expanding the mutual
information at first-order inb0/b one finds that there is no
contribution fromW 1 to this order. Hence the mutual infor-
mation at first-order inb0/b is given by Eq. (17) atJ � M 21

;

with f 0i given by Eq. (20) in which we setc i � ri : This gives

I �V;S� � Const: 2
b0

2b

XN
a�1

Gaa

Z
dsa�ra�sa��3 �22�
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with

Gaa � �M 21MT21�aa: �23�
One sees that the term depending onM is what appears in

normalization (6) of the mixture matrix. Hence if one
chooses this particular normalization (6) in order to define
the strengths,ha; of the sources, one can rewrite

I �V;S� � Const: 2
b0

2b

XN
a�1

1
h2
a

kr2
al �24�

with kr2
al � R

dsa�ra�sa��3: The above expression shows
how each source contributes to the mutual information in
term of its strengthha and its p.d.f.ra:

Within the close-to-Gaussian approximation (12) one
gets

I �V;S� � Const: 2
b0

b

XN
a�1

ks3
al2

c
1
h2
a

: �25�

Hence the sources that contribute the most to the conveyed
information are those for which the quantity

Ea ; ks3
al2

c
1
h2
a

�26�

is the smallest. One should remember that, here,ha is given
by

1
h2
a

�
XN
j�1

��M 21�aj�2: �27�

3.3. Discussion

As already seen when computing the mutual information
between the data and the sources, a source will contribute if
it is strong and/or close to Gaussian. However, the particular
combination that appears here is different from the one we
obtained in the previous section: here we have a multipli-
cative combination of strength and cumulant, whereas in Eq.
(14) it was an additive combination.

An important practical remark is that, if the third-order
cumulants are zero, the close-to-Gaussian approximation
has to take into account the fourth-order cumulants. Then,
instead of Eqs. (14) and (26) one gets similar expressions
with the fourth-order cumulants in place of the third-order
ones.

The criterion (26) can be used in different ways, depend-
ing on the particular application considered. The quantity
Ea is zero for Gaussian sources, whatever their strengths.
This is not surprising since the Shannon information is
maximal for Gaussian distributions. However, in many
cases the Gaussian part of the signal is considered as
“noise”, and the non-Gaussian part is the “meaningful”
part, the “true” signal. Hence mutual information can be
used as a cost function in order to extract this noise, in
particular when it is strong, which can then be subtracted
from the input signal. In cases where one has distributions of

similar shapes, Eq. (26) suggests to use the strength as
defined in Eq. (27) to order the sources and select the
most relevant ones.

To conclude this section, we see that the intuitive idea
that weak sources can be considered as noise terms and
cannot be estimated, can be quantified from various point
of views. From the purely numerical aspect, the mixture
matrix is close to being singular; the information content
of the data, the amount of information conveyed by a
processing channel, are seriously diminished by the
presence of weak sources. From this analysis, it appears
clearly that it would be preferable to be able to project the
data onto the space spanned by the strong sources, in order
to work in a space of smaller dimension with sources of
similar strengths. In the next section we show that this is
simply done by making use of the principal component
analysis.

4. Principal component analysis

A standard approach in data processing consists in first
performing the principal component analysis (PCA), and
then projecting the data onto the eigenspace associated
with the largest eigenvalues. In the present context of
BSS, it is reasonable to expect the space spanned by the
strong sources to be essentially the same as the one asso-
ciated to the largest principal components. It is the purpose
of this section to give a positive and more precise answer to
this question.

We consider the specific case wheremsources are strong,
while N 2 msources are weak. More precisely, choosing for
later convenience normalization (5), we assume

ha , O�1� e0� for a � 1;…;m

ha , O�e� for a � m1 1;…;N;

�28�

wheree is a small parameter,e p 1: This is equivalent to
state that there is a gap in the spectrum of eigenvalues at the
lm; with lm11 p lm:

We assume that the reducedN × m mixture matrixM0,
{ M0

ja � Mja; j � 1;…;N; a � 1;…;m} is of rank m, so
that the�N × N� correlation matrix (the covariance of the
input signal)C0, which would be obtained ate ; 0; hasm
non-zero eigenvalues. It is a standard exercise in pertur-
bation theory (Messiah, 1961) to study the behavior of the
eigenvalues and eigenvectors of a symmetric matrix, here
the covariance matrixC of the inputs, at first non-trivial
order in the small parametere . The eigenvalues have a
smooth behavior withe : the m largest eigenvalues ofC
are, at first non-trivial order, them non-zero eigenvalues
of C0 shifted by quantities of ordere2

; and theN 2 m
smallest ones are of ordere2

: However, the eigenvectors
are very sensitive to small variations ofe–this is related
to the fact that the mixture matrixM is closed to be singular
for small e . More precisely, one gets the following results.
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One can writeC as

C � C0 1 e2C1
; �29�

where C0 is the correlation of the inputs that would be
obtained without the weak sources�e ; 0�; and e2C1

contains all the contributions from the weak sources. We
denote byl0

a the eigenvalues ofC0, with {l0
a; a � 1;…;m}

non-zero andl0
a � 0 for a � m1 1;…;N: The associated

eigenvectors {v0
a; a � 1;…;N} form an orthonormal basis.

If all the eigenvalues ofC0 are different (hence in particular
N � m1 1), then, at first order, the eigenvalues ofC are

la � l0
a 1 e2l1

a

l1
a � v0T

a C1v0
a �a � 1;…;N�; �30�

and the corresponding eigenvectors are

va � v0
a 1 e2

X
b±a

v0
b

v0T
a C1v0

b

l0
a 2 l0

b

�a � 1;…;N�: �31�

If there are degenerate eigenvalues (in particular the null
eigenvalue is degenerate forN . m1 1�; this is modified as
follows. SupposeC0 has onlyr , N different eigenvalues,
m1 . m2 . … . mr ; with degeneraciesqa; a� 1;…; r
�Pa qa � N; mr � 0 if N . m1 1 �: We have

l0
a � ma for

Xa2 1

b�1

qb , a #
Xa
b�1

qb ; aa �32�

and we seta0 ; 0: Consider an eigenvaluema with degen-
eracy qa . 1: The eigenvectors ofC0 associated toma;

{ v0
a; aa21 , a # aa} ; form an orthonormal basis of this

eigenspace of dimensionqa, and this base is defined up to
an arbitrary orthogonal transformation. This arbitrariness is
removed at first non-trivial order ine , together with the
removal of the eigenvalue degeneracy: the newqa eigen-
values for {aa21 , a # aa} are given by Eq. (30), where
the v0s form the particularqa × qa orthogonal matrix that
diagonalizesC1

a; the restriction of the matrixC1 to the
eigenspace ofma; l

1
a being then the eigenvalue ofC1

a:

The eigenvectorsv are now given by an equation similar
to Eq. (31), with the sum overb ± a replaced by a sum over
the b such thatlb ± la; and a new term specific to each
degenerate eigenvaluema:

va � v0
a 1 e2

X
b:lb±la

v0
b

v0T
a C1v0

b

l0
a 2 l0

b

1 e2
X

b:lb�la
Xa;bv0

b

�a � 1;…;N�;
�33�

where thev0 are chosen as just explained, andXa;b is an
arbitrary antisymmetric matrix.

The final result is thus that the space generated by them
eigenvectors associated to them largest eigenvalues is, to
ordere2

; the same space as the one that would be obtained in
the absence of the weak sources. Projecting the data onto
this space is then equivalent to working with them-dimen-

sional signal which is the mixture of them strong sources,
weakly corrupted by an additive noise.

5. BSS with noisy data

Let us now assume that we have preprocessed the data by
projecting it onto them largest principal components. To
avoid the introduction of a new notation, in the following
{ Sj ; j � 1;…;m} will denote these preprocessed data
(projections) instead of the data themselves. Instead of the
model Eq. (1) we have thus to consider the model

Sj �
Xm
a�1

Mjasa 1 n0
j ; j � 1;…;m: �34�

The matrix M is now am× m invertible mixture matrix,
such thatMM T has m non-zero, of order 1� e0

; eigen-
values. Thesa ’s �a � 1;…;m� are the sources of interest,
and then0

j ’s are additive noises, resulting from the weak
sources, as explained in the previous section. This noise
n0 � {n0

j ; j � 1;…;m} is uncorrelated with them (strong)
sources, and of arbitrary distributionP�n0�: Since we are
working in the smalle regime, all we will need is to char-
acterize this distribution by its first two cumulants:

kn0l � 0

kn0n
T
0l � e2B; �35�

where B is a (possibly non-diagonal)m× m symmetric
matrix. The problem we are considering now is thus strictly
the same as the one of performing BSS on a linear mixture
of msources corrupted by some additive input noise, which,
although small, cannot be neglected.

5.1. The mutual information

In this section we consider this noisy BSS problem within
the infomax approach as formulated in Nadal and Parga
(1994). The network we consider has the same architecture
as the one defined in Eq. (16), but withm inputs and outputs:

Vi � fi�hi�1 ni �36�

hi �
Xm
j�1

Jij �Sj 1 n0
j � i � 1;…;m; �37�

with knini 0 l � bdi;i 0 : The limit to be considered here is the
one of a vanishing output noise,b! 0; but at a given input
noise level:

0 , b p e2
: �38�

Another important difference with the calculation done in
Section 3.2, is that here we are interested in computing the
information conveyed about the global input,S1 n0; and
not about the “pure” signal alone,S. Indeed, in Section 3.2
we considered some input noise corresponding to some
noise at the level of the receptors, whereas here the actual
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signal is the global input,S1 n0; in which wehave decided
to call “(pure) signal” the part coming from the strong
sources and “noise” the part due to the weak sources.

In this limit of vanishing output noise, the mutual infor-
mationI �V;S1 n0� between the output and the input of the
network is up to a constant equal to the output entropy. To
simplify the analysis, we assume a full adaptation of the
transfer functions, which means (Nadal & Parga, 1994),
for J given,

f 0i�hi� � c i�hi�; i � 1;…;m; �39�
wherec i�hi� is the marginal probability distribution of the
PSPhi. As a result the mutual information is up to a constant
equal to the redundancy between the PSPs (Nadal & Parga,
1994):

I �V;S� � Const: 2
Z

dmhc�h�ln c�h�Ym
i�1

c i�hi�
: �40�

5.2. Maximization in the smalle limit

In term of the sources distributions, the distributionc�h�
is given by:

c�h� �
ZYm

a�1

dsara�sa�

�
Z

dmn0P�n0�
Ym
i�1

d hi 2
X
a

�JM�iasa 2
X

j

Jijn
0
j

0@ 1A:
�41�

Since in Eq. (41) the noisesn0
j are, O�e� we can perform

an expansion, leading to the following expression:

c�h� � 1 1
e 2

2

X
i;i 0
�JBJT�ii 02i2i 0

8<:
9=;c 0�h�; �42�

where2i means the partial derivative with respect tohi, and
c 0�h� is the p.d.f. that would be obtained ate � 0: Because
the noise has zero mean there is no term of ordere in Eq.
(42).

We consider now the maximization of the mutual infor-
mation over the choice ofJ, taking into account thate is
small. If e was strictly zero, we would be back to the noise-
less BSS problem for which the optimum is reached forJ �
M 21 (up to an arbitrary permutation). So for non-zeroe we
write

W ; JM � 1m 1 eW1 1 O�e2�; �43�
where1m is them× m identity matrix, and the correction is a
matrix of order at leaste . SinceW depends now one we can
also expandc 0 in powers ofe , and finallyc�h� can then be

written as

c�h� �
Y
a

ra�ha���1 1 eQ�h�1 R�h�
" #

�44�

with

Q�h� ; 2
X
a;b

�ln ra� 0W1
abhb 2 TrW1 �45�

andR[h] contains terms of order at leaste2
; coming from

both W, Eq. (43), andB, Eq. (42). Similarly, for the
marginal distributions:

ca�ha� � ra�ha�{1 1 eQa�ha�1 Ra�ha�} ; �46�
with

Qa�ha� ; 2�ln ra� 0W1
aaha 2 W1

aa: �47�
The substitution of Eqs. (44) and (46) in expression (40)

gives then for the mutual information, at first non-trivial
order:

I �V;S� � I0�V;S�2
e2

2

ZYm
a�1

dhara�ha�

� Q�h�2
X
a

Qa�ha�
" #2

: �48�

The termI0(V,S) corresponds to the part of the mutual
information that does not take into account the weak
sources. It is the same as if one computes the mutual infor-
mation between the outputV and the signalMs; I(V,Ms).
The fact that there is no term of ordere in Eq. (48) can be
understood as coming from the normalization conditionsR

dhc 0�h� � 1 and
R

dhac
0
a � 1; which implyZYm

a�1

dhara�ha�Q�h� � 0

andZ
dhara�ha�Qa�ha� � 0

(these properties can be easily checked by performing the
integrations using the explicit expressions (45) and (47)).
One has similar properties for the quantities of ordere2

;

R[h] and Ra�ha� defined in Eqs. (44) and (46), so that they
do not contribute at this ordere2 in the final result (48).

Now one has

Q�h�2
X
a

Qa�ha� � 2
X
a±b

�ln ra� 0W1
abhb: �49�

The mutual information is maximized when the quadratic
term in Eq. (48) is minimized, that is forW1

ab � 0 for a ±
b: It follows that there is no correction to the mutual infor-
mation at ordere2 and that corrections due to the weak
sources appear at ordere4

:
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6. Numerical simulations

In this section we illustrate our analysis by numerical
simulations. We test the above analysis on the following
toy example. We consider the ICA of natural images
performed in Bell & Sejnowski (1995). First we reproduce
the results in Bell and Sejnowski (1995) (not shown here).
We then create a new database with artificially increased
component strengths: new images are computed as a linear
mixture of the previous ICA basis function but the strength
of 20 components was augmented 100 times compared to
the other 124. We performed ICA in this new data base, with
the same algorithm based on infomax (Bell & Sejnowski,
1995; Nadal & Parga, 1994), but after projecting the data
onto the 20 largest principal components. The resulting
basis function represented in Fig. 1 shows the efficiency
of PCA preprocessing: we find the good 20 stronger compo-
nents and the computational time is considerably decreased.

For such a signal, the PCA analysis is identical to a Four-
ier analysis, and therefore dropping the smallest eigenvalues
means neglecting high frequencies. One thus expects to
extract components that are smoothed versions of compo-
nents extracted when working with the full space. This is
indeed the case as shown in Fig. 1.

7. Concluding remarks

We have discussed the task of BSS in the case of a
mixture of sources of unequal strengths. We have presented
different, but related, ways of defining the relative strengths

of the sources. In particular, when non-zero input noise is
taken into account the contribution of a source to the
conveyed information can be characterized by a criterion
that combines the mixture matrix elements and the third
cumulant of the source distribution. This allows to define
the strength of a source once a proper normalization of the
mixture matrix is assumed. Conversely, this study shows
which sources will be “preferred” by the infomax criterion
(which part of the signal is more likely to be well extracted
by an ICA performed with infomax).

The analysis indicates also that, although arbitrary, the
assumed normalization of the mixture matrix may have an
important practical role in the analysis of the outcome of an
ICA, whenever one wants to extract the “meaningful”
sources. Which part of the signal is more important is of
course an application-dependent notion. Prior knowledge
related to a given case should allow to define the proper
normalization from which the appropriate scale of source
strengths can be defined. Conversely each chosen normal-
ization implies a particular physical interpretation that
should be kept in mind when analyzing the outcome of an
ICA.

We have considered, in more detail, the particular case of
the information processing of a linear mixture of indepen-
dent sources when some of them are very weak as compared
to the other sources. One should note that in such case the
notion of strong versus weak is independent of the mixture
matrix normalization. It is easily seen that the presence of
weak sources leads to an almost singular mixture matrix,
and this manifests itself by the existence of very small
eigenvalues in the PCA analysis. We have shown that it is
relevant to project the input data onto the largest principal
components in order to extract the strongest independent
sources. We have thus quantified the intuitive idea that the
subspace, where most of the data live, is mainly spanned by
the strongest independent sources. We illustrated this result
on the ICA of the image data base studied in Bell &
Sejnowski (1995).

A possible situation where the PCA will not be (suffi-
ciently) helpful is when the strong sources generate a linear
space of dimension smaller than the number of sources. This
space will be found by the PCA. After projection onto the
largest PCs, one has then to deal with an ICA with a number
of sources larger than the number of captors. This is an
interesting problem that has received considerable attention
recently, and several algorithms have been proposed. Our
analysis suggests then that it can be meaningfull to project
onto the largest PCs (in order to eliminate the weak sources)
and yet to search for a number of (strong) ICs larger than the
number of largest PCs.
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